

PLAXIS 3D

Tutorial Manual

2013

岩土工程有限元分析软件

PLAXIS 3D 2013[°]

案例教程

北京筑信达工程咨询有限公司 北京市古城西街 19 号研发主楼 4 层, 100043

版权

计算机程序 PLAXIS 及全部相关文档都是受专利法和版权法保护的产品。全球范围的所有权属于 Plaxis bv。如果没有 Plaxis 和北京筑信达工程咨询有限公司的预先书面许可,未经许可的程序使用或任何形式的文档复制一律禁止。

更多信息和此文档的副本可从以下获得:

北京筑信达工程咨询有限公司

北京市古城西街 19 号研发主楼 4 层 100043

电话: 86-10-6892 4600

传真: 86-10-6892 4600 - 8

电子邮件: support@cisec.cn

网址: www.cisec.cn

北京筑信达工程咨询有限公司版权所有©, 2013.

問這达

目录

水位快速下降分析1
几何建模 2
1.1 工程属性2
1.2 土层定义2
1.3 坝体定义
生成网格4
执行计算5
3.1 初始阶段: 高水位5
3.2 阶段 1: 水位快速下降6
3.3 阶段 2: 水位缓慢下降8
3.4 阶段 3: 低水位9
3.5 阶段 4 到 7:
查看结果11

水位快速下降分析

本章讲述软粘土和砂土地基中的基坑开挖施工。该基坑相对较小,尺寸为12m×20m, 开挖至地表以下 6.5m。采用支撑、腰梁和锚杆作为基坑的支护结构。开挖完毕后,将在基 坑的一侧施加面荷载。本例研究水位下降条件下的水库大坝的稳定性分析。库水位的快速下 降时,由于保留在坝体内的高孔隙水压力,将导致坝体的不稳定。坝高30m,坝顶和坝底 宽度分别为5m和172.5m。坝体由黏土心墙和两侧的级配填料组成。坝体的几何形状如图1。 坝后正常水位为25m,考虑水位下降20m的工况。坝体右侧正常潜水位埋深10m。地基土 由超固结粉砂组成。

图1 大坝几何形状

目标:

- ▶ 进行**完全流固耦合**分析
- ▶ 定义时间相关的水力条件
- ▶ 使用非饱和渗流参数

几何建模

1.1 工程属性

1. 打开输入程序,从快速选择对话框中选择开始新项目。

- 2. 在项目属性窗口中输入合适的标题。
- 3. 保持默认的单位并设置模型边界为 x_{min}=-130, x_{max}=130, y_{min}=0, y_{max}=50。

假设坝体位于开阔河谷,取 50m 长的坝体代表段以减小模型尺寸。模型的几何形状见图 1.1。

图 1.1 模型的几何形状

1.2 土层定义

为了定义下卧的地基土体,需要添加一个钻孔并赋予材料属性,模型中的地基土层考虑 30m 厚的超固结粉砂层。

- 1. 在(0.0,0.0)处创建钻孔,弹出修改土层窗口。
- 2. 添加从地表(z=0)至 30m 深处(z=-30)的土层。
- 3. 设置钻孔**水头**为-10*m*,自动生成一个水平水位。该水位将与地下水渗流的面边界 条件组合用于**完全流固耦合**分析中。
- 4. 打开材料组窗口。
- 参照表 1.1 给出的信息,在土体和界面选项中创建数据组。注意此处与界面和初始 条件页面无关(未用到界面或 K₀ 过程)。
- 6. 将地基土材料组赋给钻孔中的土层。

参数	名称	心墙	填料	地基土	单位	
材料模型	Model	摩尔库伦	摩尔库伦	摩尔库伦	-	
排水类型	Туре	非透水	透水	透水	-	
水位以上的土体重度	Yunsat	16	16	17	kN/m ³	
水位以下的土体重度	V sat	18	20	21	kN/m ³	
参数						
杨氏模量	E'	1.50 <i>E</i> +03	2.00 <i>E</i> +04	5.00 <i>E</i> +04	kN/m ²	
泊松比	v′	0.35	0.33	0.3	-	

表 1.1 坝体和地基土材料属性表

粘聚力	c'ref	-	5	1	kN/m ²
不排水抗剪强度	su,ref	5	-	-	kN/m ²
摩擦角	φ'	-	31	35	0
剪胀角	ψ	-	1	5	0
杨氏模量增量	E'inc	300	-	-	kN/m ²
参考位置	zref	30	-	-	т
不排水抗剪强度增量	su,inc	3	-	-	kN/m ²
参考位置	zref	30	-	-	т
渗流					
渗流 渗流数据组	Model	Hypres	Hypres	Hypres	-
渗 流数据组 模型	Model -	Hypres VG 模型	Hypres VG 模型	Hypres VG 模型	-
渗流 数据组 模型 土体	Model - -	Hypres VG 模型 下层土	Hypres VG 模型 下层土	Hypres VG 模型 下层土	- -
渗流数据组 模型 土体 土体粗细度	Model - - -	Hypres VG 模型 下层土 很细	Hypres VG 模型 下层土 粗	Hypres VG 模型 下层土 粗	
渗流数据组	Model - - - kx	Hypres VG 模型 下层土 很细 1.00E-04	Hypres VG 模型 下层土 粗 0.25	Hypres VG 模型 下层土 粗 0.01	- - - m/day
渗流数据组 模型 土体 土体粗细度 水平渗透系数	Model - - kx ky	Hypres VG 模型 下层土 很细 1.00E-04 1.00E-04	Hypres VG 模型 下层土 粗 0.25 0.25	Hypres VG 模型 下层土 粗 0.01 0.01	- - - - m/day m/day

1.3 坝体定义

坝体在结构模式中定义。

- 1. 《 在(-8000)、(92.500)、(2.5030)和(-2.5030)处指定点来定义面。
- 2. 《 在(-1000)、(1000)、(2.5030)和(-2.5030)处指定点来定义面。
- 3. 在绘图区选中两个面并单击右键,在弹出的菜单中选择**交叉与重组**选项。
- 4. 选中这些面并沿(0 50 0) 拉伸, 生成代表坝体的实体。
- 5. 删除用于创建土体实体的面。
- 6. 将对应的材料组赋给土体实体。
- 7. 时间相关条件可以赋给地下水渗流面边界条件。按照表 1.2 中的信息来定义地下水渗流面边界条件(利用创建水力条件工具)。

面	点
1	(-130 0 0), (-80 0 0), (-80 50 0), (-130 50 0)
2	(-80 0 0), (-2.5 0 30), (-2.5 50 30), (-80 50 0)
3	(-130 0 0), (-130 0 -30), (-130 50 -30), (-130 50 0)

表 1.2 地下水渗流面边界条件

生成网格

在生成网格时建议将单元分布参数设定为细。修改全局粗细度:

- 1. ⁶在工具栏中点击**生成网格按钮**,弹出网格选项窗口。
- 2. 从单元分布下拉列表中选择选项细(如图 2.1)

Mesh options			
 Element distribution 	Fine 🔻		
Expert settings			
Relative element size	0.7000		
Element dimension	9.502 m		
Polyline angle tolerance	30.00		
Surface angle tolerance	15.00		
Max cores to use	256		
<u>O</u> K <u>C</u> ancel			

图 2.1 全局粗细度修改

- 3. 点击 OK 按钮关闭网格选项(Mesh options)窗口,生成网格。
- 4. 《《点击工具栏中的查看网格(View mesh)按钮来预览生成的网格, 网格划分结果如 图 2.2 所示。

图 2.2 网格划分结果

执行计算

计算过程将考虑初始状态(高水位)、水位快速下降工况、水位慢速下降工况以及最终的 低水位工况。每种工况都要进行安全性分析。

- 1. 进入水位设置模式。
- 2. 《 依照表 3.1 给出的信息, 创建对应满库的高水位工况, 以及下降后的低水位工况。
- 3. 在**模型浏览器(Model explorer)**的属性库(Attribute library)中将创建的用户水位重命 名为"高水位"(High_Reservoir)和"低水位"(Low_Reservoir)。

表 3.1 水位

水位	点
高水位	(-130 0 25), (-10 0 25), (93 0 -10), (130 0 -10), (130 50 -10), (93 50 -10)(-10 50 25), (-130 50 25)
低水位	(-130 0 5), (-10 0 5), (93 0 -10), (130 0 -10), (130 50 -10), (93 50 -10)(-10 50 5), (-130 50 5)

注: 钻孔水位和非水平的用户水位不能修改(如时间相关性)。

3.1 初始阶段: 高水位

- 1. 进入分步施工(Staged construction)模式
- 2. 在阶段浏览器(Phases explorer)中双击初始阶段(Initial phase)
- 3. 在阶段窗口的常规设置子树下将阶段重命名为"高水位"(High reservoir)。
- 4. 选择重力加载(Gravity Loading)选项作为计算类型。注意分步施工(Staged

construction)是加载类型的唯一选项。

5. 选择孔隙压力计算类型为稳态地下水渗流(Steady state groundwater flow)。

注意:在**变形控制参数(Deformation control parameters)**子树中,默认选择忽略不排水行为(A,B)和忽略吸力(Ignore suction)选项。**数值控制参数**(Numerical control parameters) 和**水力控制参数**(Water control parameters)子树中的参数均采用默认值。

- 6. 单击 OK 关闭阶段窗口。
- 7. 在分步施工(Staged construction)模式中激活代表坝体的土体。
- 8. 在模型浏览器(Model explorer)中展开模型条件(Model conditions)子树。
- 9. 在地下水渗流(GroudwaterFlow)子树中将(Boundary Y_{min}, BoundaryY_{max}, BoundaryZ_{min}) 设为关闭。其余边界打开(图 3.1)。
- 10. 在水力条件子树中选择高水位(High_Reservoir)作为全局水位(Global Water Level).

图 3.1 地下水渗流边界条件

3.2 阶段 1: 水位快速下降

在水位快速下降阶段,水库中的水位将在 5 天内从 Z=25m 下降到 Z=5m。定义描述水位 变化的函数如下:

- 1. 在模型浏览器(Model explorer)中展开属性库(Attributes library)。
- 2. 右键点击**渗流函数**(Flow functions)并在弹出的菜单中选择编辑(Edit)选项,出现**渗流** 函数(Flow functions)窗口。
- 在水头函数(Head functions)页面中点击对应按钮添加一个新函数。新函数将在 列表中高亮显示,定义函数的各选项也将显示。
- 4. 给快速下降函数指定一个合适的名字(比如 Rapid)
- 5. 在信号(Signal)下拉菜单中选择线性(Linear)选项
- 6. 令△ Head=-20m,代表总的水位下降值
- 7. 指定时间间隔为5天。定义的函数图形如图3.2所示。
- 8. 单击 OK 关闭渗流函数(Flow functions)窗口
- 10. ¹⁰选择计算类型(Calculation)为完全流固耦合(Fully coupled flow-deformation)
- 11. 设置时间间隔(Time interval)为5天。

图 3.2 水位快速下降工况下的渗流函数

- **12.** 在**位移控制参数**(*Deformation control parameters*)子树中,选择重置位移为零(*Reset displacements to zero*)选项。
- 13. 点击 OK 关闭阶段(Phases)窗口
- 14. 激活全部地下水渗流面边界条件
- 15. 在绘图区多选地下水渗流面边界条件。
- **16.** 在选择浏览器(Selection explorer)中,选择水头(Head)选项作为行为特征。水头分布 为常量(Constant),令 h_{ref}=25m。
- 17. 将时间相关性设置为时间相关(Time dependent),并将水头函数(Head Function) 选择为快速下降(Rapid)。与水头函数相关的信息也会显示在对象浏览器(Object explorers)中(图 3.3)。

	Selection explorer (Phase_1)
	□-· (Selection
	Fineness factor: 0.5000
	🗄 🕢 💽 SurfaceGWFlowBC
	Behaviour: Head
	Distribution: Constant
	h _{ref} : 25.00 m
	Time dependency: Time dependent
	- Head function: Rapid
	Signal: Linear
	Time: 5.000 day
	ΔHead: -20.00 m
1	

图 3.3 水位快速下降工况下的 SurfaceGWFlowBC(地下水流体面边界条件)的定义

PLAXIS 3D 2013 案例教程:水位快速下降分析

18. 在模型浏览器(Model explorer)中的水力条件 (Water) 子树下选择钻孔水位 1(BoreholeWaterLevel_1)选项作为全局水位。

3.3 阶段 2: 水位缓慢下降

在水位缓降阶段,水库水位将在 50 天内从 z=25m 下降到 z=5m。定义描述水位变化的函数如下:

- 1. 按照前述步骤创建一个新的渗流函数
- 2. 给缓慢下降函数指定一个合适的名字(比如 Slow)
- 3. 在信号(Signal)下拉菜单中选择线性(Linear)选项
- 4. 令*∆* Head=-20m, 代表总的水位下降值
- 5. 指定时间间隔为 50 天。定义的函数图形如图 3.4 所示。

图 3.4 水位缓降工况下的渗流函数

- 6. 点击 OK 关闭渗流函数(Flow functions)窗口。
- 7. 添加一个新的计算阶段并重命名(如 Slow drawdown)
- 8. 设置开始阶段 (Start from phase)参数为高水位(High reservoir).
- 9. 送设置计算类型(Calculation type)为完全流固耦合(Fully coupled

 $\mathit{flow-deformation}$.

- 10. 设置时间间隔为 50 天。
- 11. 在**变形控制参数**子树中,选择重置位移为零选项。
- 12. 点击 OK 关闭阶段窗口。
- 13. 在模型中选中全部地下水渗流面边界条件。
- 14. 在选择浏览器中选择慢速下降(Slow)选项作为水头函数
- 15. 钻孔水位 1(BoreholeWaterLevel_1)仍然作为全局水位(GlobalWaterLevel)。

3.4 阶段 3: 低水位

本阶段考虑低库水位下的稳态渗流工况

- 1. 🐻 添加一个新的计算阶段
- 2. 在阶段浏览器中双击新增加的计算阶段,则显示阶段窗口
- 3. 在常规设置子树中指定新计算阶段的名字(比如 Low level)
- 4. 设置开始阶段参数为高水位(High reservoir)
- 5. 设置计算类型为塑性(Plastic)选项。

- 7. 在**变形控制参数**子树中,选择**重置位移为零**选项。
- 8. 点击 OK 关闭阶段窗口。
- 9. 在模型浏览器(Model explorer)中的关闭地下水渗流面边界条件(BSs)。
- 10. 在水力条件子树中选择低库水位(Low_Reservoir)作为全局水位(GlobalWaterLevel)。

3.5 阶段4到7:

阶段 4-7 分别为前述各阶段定义稳定性计算。

- 1. **•** 在 Phases explorer(阶段浏览器)中选择相应的阶段,添加一个新的计算阶段并 进入阶段窗口。
- 2. 设置计算类型(Calculation type)为安全性计算(Safety)。设置增量乘子

(Incremental multipliers)为加载类型(Loading type)

- 3. 在变形控制子树中,选择重置位移为零(Reset displacements to zero)选项。
- 在数值控制参数(Numerical control parameters)子树中,令阶段4的最大步数为30, 阶段 5-7 的最大步数为50。阶段浏览器的最终视图如图3.5 所示。

Phases explorer	
High reservoir [InitialPhase]	🔁 🕒 😫
Rapid drawdown [Phase_1]	🔁 🕒 🗟
Rapid drawdown - Safety [Phase_4]	ΓΔ
Slow drawdown [Phase_2]	🔁 🕒 🗟
Slow drawdown - Safety [Phase_5]	ΓΔ
V Low level [Phase_3]	M 📑 🚍
Low level - Safety [Phase_6]	ΓΔ
High reservoir - Safety [Phase_7]	ΓΔ

图 3.5 阶段浏览器 (phases explorer) 的最终视图

✓在分步施工(Staged construction)模式中选择一个位于顶点(-2.5 25 30)处的节点。

征在**分步施工(Staged construction)**模式中点击计算(Calculation)按钮开始执行计算。

查看结果

- 1. **(***U***)** 计算结束后,点击**查看计算结果**(*View the calculation result*)按钮显示结果。输出(*Output*)窗口当前显示的是所选计算阶段的变形网格。
- 2. 在 Stresses(应力)菜单中指向**孔隙压力**(Pore pressure)选项,并在弹出菜单中选择 p_{water}选项。
- 3. 《》定义一个通过(-130 15)和(130 15)的竖向剖面。
- 4. 按照孔隙水压力分布绘制的四种地下水渗流计算结果,如图 4.1 至 4.4 所示。四种 不同的工况分别为:
- 5. 高(标准)库水位工况(图 4.1)

图 4.1 高库水位时的孔隙水压力分布

6. 水位快速下降后的工况(图 4.2)。

图 4.2 水位快速下降后孔隙水压力分布

7. 库水位缓慢下降后的工况(图 4.3)

图 4.3 水位缓降后孔隙水压力分布

8. 低水位工况(图 4.4)

图 4.4 低水位时孔隙水压力分布

- 9. 在变形分析中,当考虑孔隙水压力变化时,坝体将发生附加变形。这些变形和有效 应力分布能从上述四个阶段计算结果的基础上查看。
- 由于本教程重点关注的是大坝在不同工况下的安全系数变化,因此 4-7 阶段的Σ M_{sf}发展与坝顶节点的位移关系函数曲线绘制如图 4.5。

图 4.5 不同工况下的安全系数

库水位的快速下降能显著降低大坝的稳定性。利用 PLAXIS 3D 进行完全流固耦合分析与 稳定性分析,能有效地分析此类工况。

本教程到此结束!